

USE AND MAINTENANCE MANUAL

SAR 460 SA G DIGIT

THOMAS S.p.A. - Via Pasubio, 32 - 36033 Isola Vicentina (VI) - Telefono 0444 / 97.61.05 - Fax 0444 / 97.69.34 Registro Imprese n. 4272//VI 116 REA n. 93906/Vicenza

2005/SRT

THOMAS

Contents

Contents	2
Ordering spare parts "	2
Guarantee "	2
Machine certification and identification marking "	3
CHAPTER 1	
Reference to accident-prevention regulations	4
1.1 - Advice for the operator"1.2 - Location of shields against accidental contact with	4
the tool	4
1.3 - Electrical equipment according to European	
Standard "CENELEC EN 60 204-1"" 1.4 - Emergencies according to European Standard	5
"CENELEC EN 60 204-1""	5
CHAPTER 2	_
Recommendations and advice for use	5
2.1 - Recommendations and advice for using the machine."	5
CHAPTER 3	
Technical characteristics "	6
3.1 - Table of cutting capacity and technical details standard model"	6
	0
Machine dimensions - Transport - Installation	
Dismantling	6
4.1 - Machine dimensions"	6
4.2 - Transport and handling of the machine"	7
4.3 - Minimum requirements for the premises	_
housing the machine"	7
4.4 - Anchoring the machine" 4.5 - Instructions for electrical connection"	7 7
4.5 - Disactivating the machine"	7
4.0 - Disactivating the machine	8
	0
CHAPTER 5	
Machine functional parts"	8
5.1 - Operating head or sawframe"	8
5.2 - Vice"	8
5.3 - Bed"	8
CHAPTER 6	
Description of the operating cycle"	9
6.1 - Starting up" 6.2 - Cutting speed INVERTER"	9
6.2 - Cutting speed INVERTER	9
6.3 - Piece-counter"	10
6.4 - Cutting cycle" 6.5 - Sawframe return stroke limit (option)"	10 10
6.6 - Alarm	12

Ordering spare parts

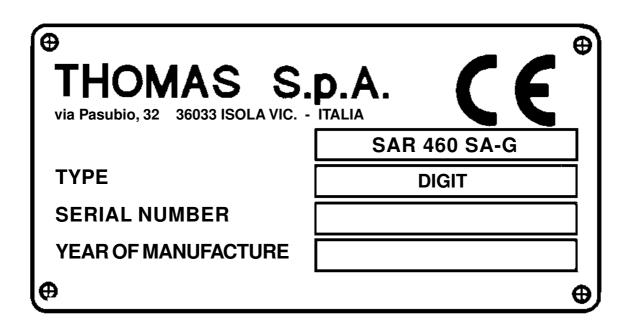
-	When ordering spare parts you must state:
	MACHINE MODEL
	SERIAL NUMBER
	PART REFERENCE NUMBER
W	/ithout these references WE WILL NOT SUPPLY the spares. See point 10.1 - list of spare parts -

Guarantee

- The Company guarantees that the machine, described in this manual, has been designed to meet safety requirements. As for machine functionality, inspection has been successful.
- The machine is guaranteed for 12 months: the guarantee does not cover the electric motors, electric components, pneumatic components or any damage due to dropping or to bad machine management, the failure to observe maintenance standards or bad handling by the operator.
- The buyer has only the right to replacement of the faulty parts, while transport and packing costs are at his expense.
- The serial number on the machine is a primary reference for the guarantee, for after-sales assistance and for identifying the machine for any necessity.

CHAPTER 7 -

Regulating the machine"	12
7.1 - Blade tension assembly"	12
7.2 - Blade-guides"	13
7.3 - Vice"	14
7.4 - Cutting angle adjustment"	14
7.5 - Vice pressure regulation"	14
7.6 - Blade cleaning brush"	14
7.7 - Changing the blade"	15


CHAPTER 8

CHAPTER 8					
Routine and special maintenance " 8.1 - Daily maintenance " 8.2 - Weekly maintenance " 8.3 - Monthly maintenance " 8.4 - Six-monthly maintenance " 8.5 - Oils for lubricating coolant " 8.6 - Oil disposal " 8.7 - Special maintenance " CHAPTER 9	15 15 15 15 15 15 15 15				
Material classification and choice of tool	40				
	16				
9.1 - Definition of materials"	16				
9.2 - Selecting blade"	16 16				
9.3 - Teeth pitch"	17				
9.4 - Cutting and advance speed"	17				
9.5 - Blade running-in" 9.6 - Blade structure"	17				
	17				
9.7 - Blade type"	17				
Shape and angle of tooth" Set"	18				
9.7.1 - Table of recommended cutting parameters"	18				
CHAPTER 10	10				
Machine components "	19				
10.1- List of spare parts"	19				
CHAPTER 11					
Three-phase electric diagram "	30				
Hydraulic electric diagram "	35				
CHAPTER 12					
Troubleshooting"	37				
12.1-Blade and cut diagnosis"					
-					
CHAPTER 13					
Noise tests"	41				
Plates and labels "	42				

Machine certification and identification marking

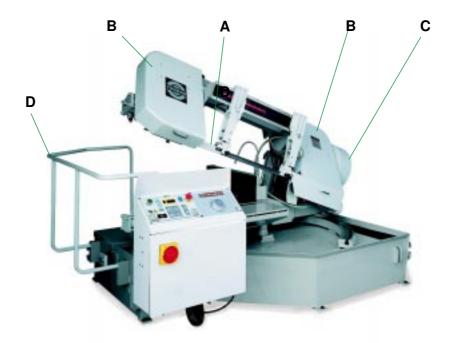
MACHINE LABEL

(Space reserved for the NAME and STAMP of the DEALER and/or IMPORTER)

1 REFERENCE TO ACCIDENT PREVENTION REGULATIONS

This machine has been built to comply with the national and community accident-prevention regulations in force. Improper use and/or tampering with the safety devices will relieve the manufacturer of all responsibility.

1.1 - Advice for the operator



- Check that the voltage indicated on the plate, normally fixed to the machine motor, is the same as the line voltage.
- Check the efficiency of your electric supply and earthing system; connect the power cable of the machine to the socket and the earth lead (yellow-green in colour) to the earthing system.
- When the saw frame is in suspend mode (up) the toothed blade must not move.
- Only the blade section used for cutting must be kept unprotected. Remove guarding by operating on the adjustable head.
- It is forbidden to work on the machine without its shields (these are all white, blue or grey in colour).
- Always disconnect the machine from the power socket before blade change or carrying out any maintenance job, even in the case of abnormal machine operation.
- Always wear suitable eye protection.
- Never put your hands or arms into the cutting area while the machine is operating.
- Do not shift the machine while it is cutting.
- Do not wear loose clothing with sleeves that are too long, gloves that are too big, bracelets, chains or any other object that could get caught in the machine during operation; tie back long hair.
- Keep the area free of equipment, tools or any other object.
- Perform only one operation at a time and never have several objects in your hands at the same time. Keep your hands as clean as possible.
- All internal and/or internal operations, maintenance or repairs, must be performed in a well-lit area or where there is sufficient light from extra sources so as to avoid the risk of even slight accidents.

1.2 - Location of shields against accidental contact with the tool

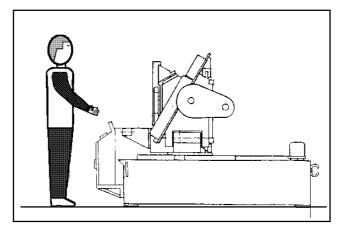
- Grey metal guards, fastened with screws onto the mobile blade-guide ensures covering of blade section not used in cutting operation (A).
- Grey metal guards, fastened onto the sawframe, to protect from flywheels (B).
- Grey metal guard to protect from driving belts (C).
- Grey metal fence around the machine, to protect the operator from cutting area (D) .

1.3 - Electrical equipment according to Euro-pean Standard "CENELEC EN 60 204-1" which as-similates, with some integrating modifications, the publication "IEC 204-1"

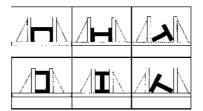
- The electrical equipment ensures protection against electric shock as a result of direct or indirect contact. The active parts of this equipment are housed in a box to which access is lim
- ited by screws that can only be removed with a special tool; the parts are fed with alternating current at low voltage. The equipment is protected against splashes of water and dust.
- Protection of the system against short circuits is ensured by means of rapid fuses and earthing; in the event of motor overload, protection is provided through the inverter.
- The machine has been tested in conformity with point 20 of EN 60204.

1.4 - Emergencies according to European Standard "CENELEC EN 60 204-1"

- In the event of incorrect operation or of danger conditions, the machine may be stopped immediately by pressing the red mushroom button.
- The casual or voluntary removal of the protection shield of the flywheels causes the stepping-in of a microswitch that automatically stops all machine functions.
- In case blade breaks, the pressure switch stops all machine functions.


1.5 - OTHER RISKS

- As the machine is running, any intervention from the operator within the "dangerous zone" or cutting area must be considered a risk for his own safety.


2 RECOMMENDATIONS AND ADVICE FOR USE

2.1 - Recommendations and advice for using the machine

- The machine has been designed to cut metal building materials, with different shapes and profiles, used in workshops, turner's shops and general mechanical structural work.
- Only one operator is needed to use the machine, that must stand as shown in the picture.

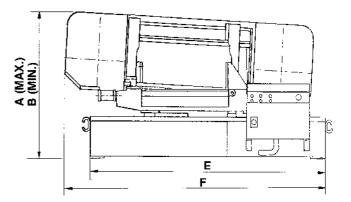
- Before starting each cutting operation, ensure that the part is firmly gripped in the vice and that the end is suitably supported. These figures show examples of suitable clamping of different section bars, bearing in mind the cutting capacities of the machine in order to achieve a good efficiency and blade durability.

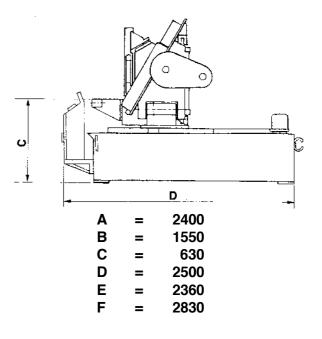
- Do not use blades of a different size from those stated in the machine specifications.
- If the blade does not cut through the material, immediately strike the emergency push-button and switch off the machine. Open the vice with the handwheel, remove part to be cut ad check that the blade teeth are not broken, If they are, replace tool.
- Check saw frame return spring to ensure proper balancing.
- Before carrying out any repairs on the machine, consult the dealer or apply to THOMAS.

3 TECHNICAL CHARACTERISTICS 3.1 - Table of cutting capacity and technical details standard model

	0		
0 °	460	450	760 x 380
30°	450	440	600 x 400
45°	400	380	400 x 360
60°	210	210	210 x 280

TECHNICAL DETAILS

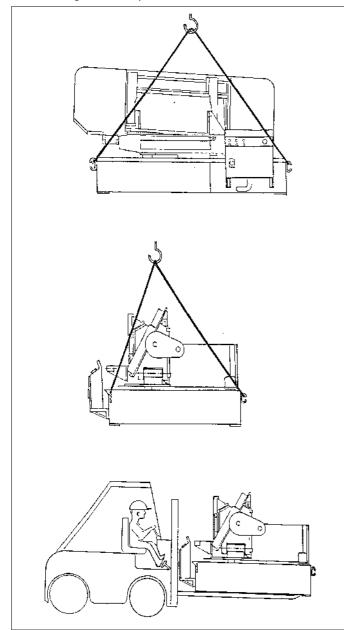

Blade dimension	mm	5500 x 38 x 1,3
Flywheel diameter	mm	560
Working table heigth	mm	630
Vice opening	mm	770
Cutting speed	m/1'	20 ÷ 100
Gear-box	Rapp.	INVERTER
Hydraulic service pressure	Bar	35
Blade tension pressure	Bar	22
Weight	Kg	2600


MOTORS

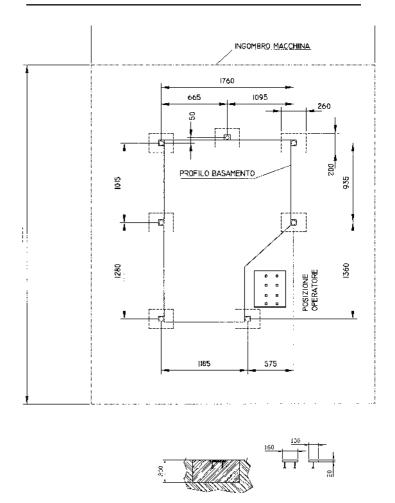
		Α	ĸw
1	Blade motor		5,5
2	Hydraulic pump motor		1,5
3	Coolant liquid electropump		0,15
4			

MACHINE DIMENSIONS TRANSPORT INSTALLATION DISMANTLING

4.1 - Machine dimensions

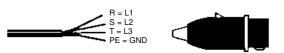


4.2 - Transport and handling of the machine


If the machine has to be shifted in its own packing, use a fork-lift truck or sling it with straps as illustrated.

4.3 - Minimum requirements for the premises housing the machine

- Mains voltage and frequency complying with the machine motor characteristics.
- Environment temperature from -10 °C to +50 °C.
- Relative humidity not over 90%.


4.4 - Anchoring the machine

- Position the machine on a firm cement floor, maintaining, at the rear, a minimum distance of 1500 mm from the wall; anchor it to the ground as shown in the diagram, using screws and expansion plugs or tie rods sunk in cement, ensuring that it is sitting level.

4.5 - Instructions for electrical connection

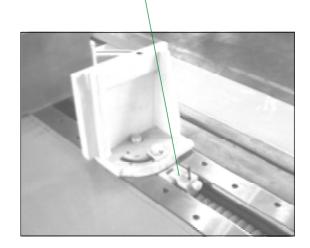
- The machine is not provided with an electric plug, so the customer must fit a suitable one for his own working conditions:
- 1 WIRING DIAGRAM FOR 5-WIRE SYSTEM FOR THREE-PHASE MACHINE - SOCKET FOR A 32A PLUG

4.6 - Disactivating the machine

- If the sawing machine is to be out of use for a long period, it is advisable to proceed as follows:
- 1) detach the plug from the electric supply panel
- 2) loosen blade
- 3) remove the sawframe return spring
- 4) empty the coolant liquid tank.

4.7 - Dismantling

(because of deterioration and/or obsolescence)


General rules

If the machine is to be permanently demolished and/or scrapped, divide the material to be disposed of according to type and composition, as follows:

- Cast iron or ferrous materials, composed of <u>metal alone</u>, are secondary raw materials, so they may be taken to an iron foundry for re-smelting after having removed the contents (classified in point 3);
- electrical components, including the cable and electronic material (magnetic cards, etc.), fall within the category of material classified as being **assimilable to urban waste** according to the laws of the European community, so they may be set aside for collection by the public waste disposal service;
- 3) old mineral and synthetic and/or mixed oils, emulsified oils and greases are **special refuse**, so they must be collected, transported and subsequently disposed of by the old oil disposal service.
- NOTE: since standards and legislation concerning refuse in general is in a state of continuous evolution and therefore subject to changes and variations, the user must keep informed of the regulations in force at the time of disposing of the machine tool, as these may differ from those described above, which are to be considered as a general guide line.

5.2 - Vice

- Material clamping system during the cutting operation by means of a special stop **pawl** and hydraulic locking.

5.3 - Bed

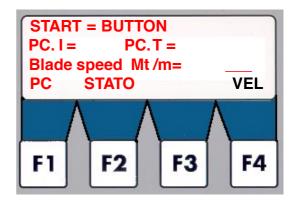
- Structure supporting the SAWFRAME OPERATING HEAD (revolving arm for degree cutting along with clamping system), the VICE; the bedplate houses the cooling liquid TANK, the CONTROL BOARD, ELECTRICAL and HYDRAULIC SYSTEMS and the DEVICE CONTROLLING the AUTOMATIC HYDRAULIC LOWERING AND RISE of the SAWFRAME.

5 machine functional parts

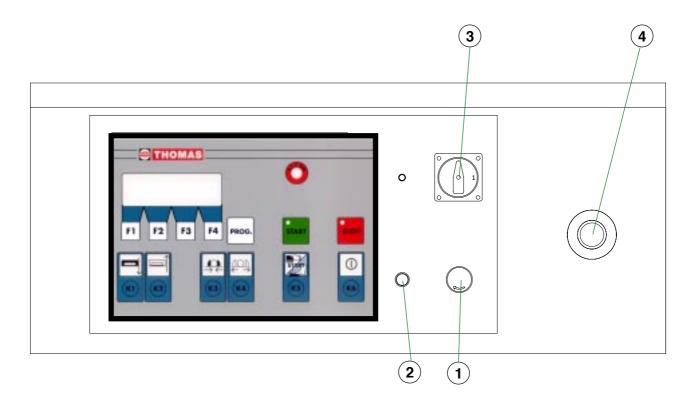
5.1 - Operating head or saw frame

- Part of the machine consisting of drive members (gearmotor or variable speed motor, flywheels), tightening and guide (blade tightening slide, blade guide head) of tool.

THOMAS

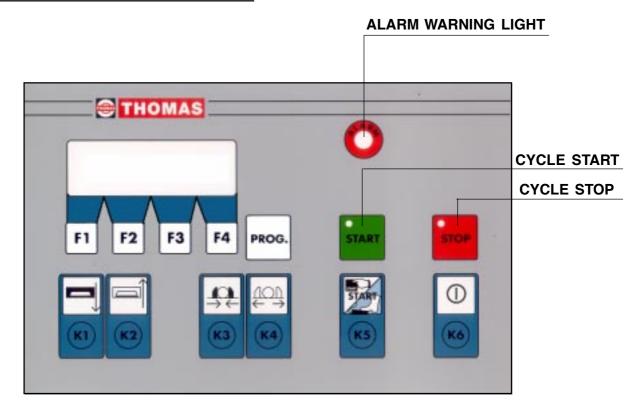

6 DESCRIPTION OF THE OPERATING CYCLE

Before operating, all the main organs of the machine must be set in optimum conditions (see the chapter on "**Regulat**ing the machine").


6.1 - Starting up and cutting cycle

- Ensure that the machine is not in emergency stop condition; if it is, release the red mushroom button (1).
- Make sure that the flywheel metal Cover is closed as well as the relevant Microswitch.
- Rotate the main switch (3) towards the right to position 1.
- Press start button (2).
- Close the regulator (4) completely (turn it clockwise).
- Press the key activating the hydraulic pump (see legenda at page 10) as well as the keys moving the sawframe and the vice to verify if these work properly; if they doesn't attempt to swap one of the electric power supply wires (only during installation).
- ATTENTION: having started the hydraulic unit motor, make sure that the blade is under tension (eventually the blade tension lever is released), so that the relevant microswitch won't break the electrical circuit. Please refer to **para. 7.1 Blade tension assembly** for more details.
- Press the key lifting the sawframe.
- Check the index showing the cutting angle; refer to *para. 7.4 Cutting angle adjustment* if you want to perform mitre cutting.

- Display shows the following information soon after you switch on the machine:



- START = start of the cutting cycle.
- PZ. I = programmed cutting cycles. The machines stops automatically once the programmed number has been completed; reset the piece-counter to start the machine again.
- PZ. T = programmed cutting cycles completed.
- **VEL** . **LAMA** or BLADE SPEED = current blade speed expressed in meters per minute.
- F1: corrisponding to the sign 'PZ' goes to the programming of the piece-counter.
- **F2**: corrisponding to the sign '**STATO**' goes to the visualization checking up the machine functions.
- **F4** : corrisponding to the sign 'VEL' goes to the adjustment of the blade speed.

LEGENDA CONTROLLER

SAWFRAME LIFT

VICE LOCK

VICE OPEN

CYCLE START SELECTION: FOOT CONTROL SWITCH, OR KEY ON THE CONTROLLER

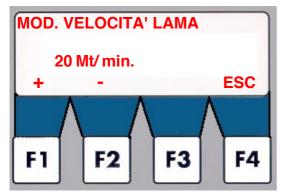
HYDRAULIC PUMP ON

ACCESS TO THE CONTROLLER CONFIGURATION (ACCESS PROTECTED BY PASSWORD).

ACTIVATES THE FUNCTION SHOWN RIGHT ABOVE ON THE DISPLAY

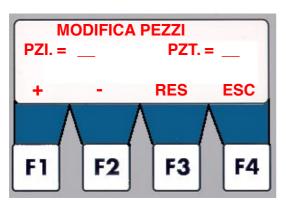
ACTIVATES THE FUNCTION SHOWN RIGHT ABOVE ON THE DISPLAY

ACTIVATES THE FUNCTION SHOWN RIGHT ABOVE ON THE DISPLAY



ACTIVATES THE FUNCTION SHOWN RIGHT ABOVE ON THE DISPLAY

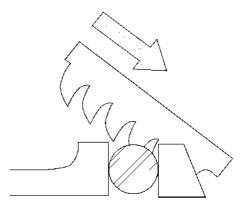
6.2 - Adjustment of the blade speed INVERTER


- The INVERTER or frequency converter controls the blade speed rotation. The range goes from **20 to 100 meters per minute**.
- Press the key corresponding to the sign 'VEL' (F4) as shown at page n. 9.
- The display shows:

- Press the keys 'F1' or 'F2' to set the correct blade speed.Press the key 'F4' to exit.
- Note: the blade speed can be adjusted even during the cutting phase.

6.3 - Piece-counter

- The piece-counter not only counts each cutting cycle, but it stops the machine automatically as soon as the programmed cutting cycle number has been completed.
- Press the key corresponding to the sign 'PZ' (F1) The dispaly shows the following information.
- Press the keys 'F1' or 'F2' to set the desired number.
- PZI. = number of cutting cycles to be executed. PZT.= number of cutting cycles already executed.
- RES.: to reset the visualized number of cuts.
- ESC.: to go back to the initial page.
- As soon as the programmed number of cutting cycles has been completed, a message appears and the machine stops


automatically.

- To start the machine again, reset the number of the executed cuts by pressing the key 'F3' (RES).
 - <u>ATTENTION</u>: if you do not need the piece-counter, just set '0' (zero) on the field **'PZ. I'**.

6.4 - Cutting cycle

- Press the key to lift the sawframe over the material to be cut.
- Open the vice and load the material.
- Rest the vice jaw on the material and make sure that the pawl is hooked down to the rack.
- Press the key to lock the vice.
- Set the correct cutting speed (see table at chapter 9).
- Set the sawframe downfeed speed on the regulator (4); initially, we recommend to set lower speed to avoid any dangerous effect.
- Press the key START: make sure that the blade turns the right direction, the coolant liquid flows and the cutting cycle proceeds properly.
- Press the red emergency push button in case of incorrect operation, or to stop the machine immediately.
- Press CYCLE STOP to stop the cutting cycle.

CUTTING DIRECTION

The machine is now ready to start work, bearing in mind that the CUTTING SPEED and the TYPE of BLADE - combined with a suitable lowering of saw frame - are of decisive importance for cutting quality and for machine performance (for further details on this topic, see below in the chapter on "Material classifica-tion and blade selection").

- When starting to cut with a new blade, in order to safeguard its life and efficiency, the first two or three cuts must be made while exerting a slight pressure on the part, so that the time taken to cut is about double the normal time (see below in the chapter on "Material classification and blade selection" in the section on *Blade running-in*).
- Press the red emergency button (**1**) when there are conditions of danger or malfunctions in general, so as to stop machine operation immediately.

6.6 - Alarms

The display shows any problem or dangerous situation.
 Once the problem has been solved, press the Start key (2) and the key corresponding to the function 'RES'.

'5 FINE PEZZI' or 'PIECES END':

It stops the machine automatically as soon as the programmed cutting cycle number has been completed. Reset the counter.

'**12 ROTTURA LAMA'** or 'BROKEN BLADE' Replace the blade or check tension.

'13 CARTER APERTO' or 'OPEN DOOR' Close the sawframe door.

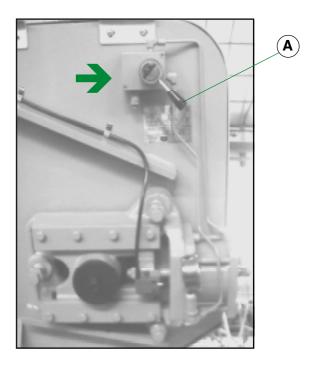
'14 FUNGO EMERGENZA' or 'EMERGENCY PUSH-BUTTON' Release the emergency push-button.

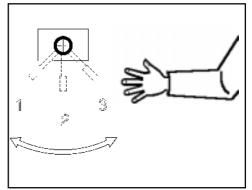
'15 TERMICO2 CENTRAL' or 'THERMAY PROTECTION' Reset the thermal relay protecting the hydraulic unit.

'16 ALLARME INVERTER'

Reset the thermal relay protecting the Inverter.

7 REGULATING THE MACHINE

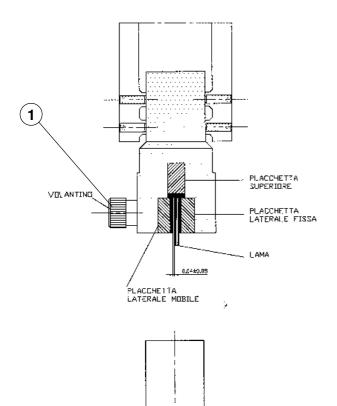

7.1 - Blade tension

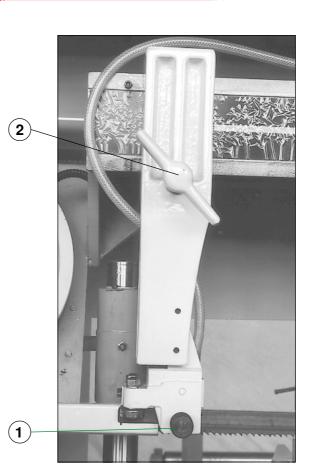

Lever (A) can be set to three different positions :

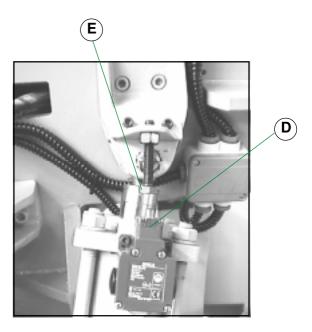
POSITION 1 : LOOSE POSITION 2 : NEUTRAL POSITION 3 : TENSION

Ensure that Lever (A) is at position 3 whenever the hydraulic pump has been started. Also make sure the blade correctly rests on the flywheels and runs through the blade-guides. Manometer should indicate 22 BAR pressure as blade tension.

A safety microswitch located on the blade tension slide, stops the machine in case of blade breakage or insufficient tensioning.

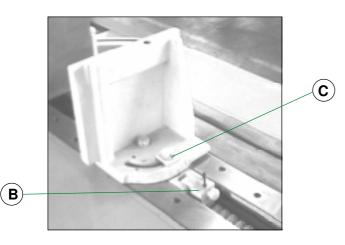




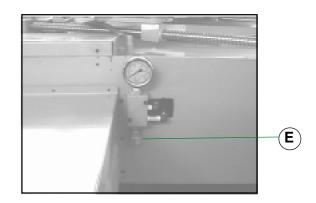

7.2 - Blade-guide blocks

Blade-guide adjustment was made at the factory during the machine testing. The blade is kept perpendicular to the workpiece by means of CARBIDE blade-guide pads. Ensure that knob (1) is completely screwed up against the block. Periodically check wear status of the pads; also keep the block and the pads clean.

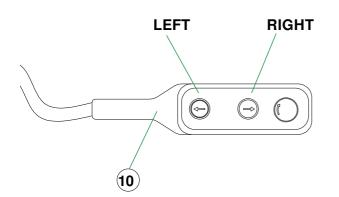
- Adjust the blade-guide arm as follows: Release both knob (1) and handwheel (2).
 Position the arm according to the workpiece dimensions; ensure that it doesn't hit the bench vice.
 Fix both handwheels (1) and (2).
- Fix both handwheels (1) and (2).
 ATTENTION: Make sure that the limit switch (D) stops the blade-guide arm just before the working table. The blade-guide arm should not fall against the working table !!. The reference screw (E) can be adjusted for this purpose.



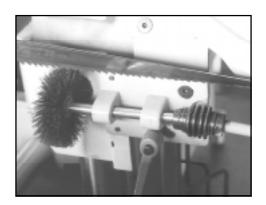
- The bearings guide the blade to the pads providing the necessary inclination and reducing the torsion stress of the blade; they do not need any adjustment or particular care.


7.3 - Vice

- Press the function key to open the vice.
- Lift the stop pawl (${\bf B}$), and $% {\bf B}$ rest the vice jaw against the workpiece.
- Ensure that the pawl (B) perfectly catches with the rack tooth.
- Press the function key to close the vice.
- Keep the rack clean to ensure that the pawl perfectly catch with the rack.
- Keep the vice guide always clean.
- In case of mitre cutting, unscrew the nut (**C**) swinging the vice to the required angle. Fix the nut (**C**).


7.5 - Vice pressure regulation (OPTION)

- Vice pressure can be adjusted through a special hydraulic valve.
- Turn the knob (${\bf E}$) either increasing or decreasing vice pressure.


7.4 - Cutting angle adjustment

- The sawframe can be swivelled from 0° to 60° to the lefthand. This way you can have the workpiece cut at a required angle.
- Fully rise the sawframe to the top position.
- Unscrew the nut (${\bf C}$) swinging the vice to the required angle. Uncrew the nuts of the circular guide as well.
- Press the push buttons located on the machine base (${\bf 10}$) swivelling the sawframe to the required angle.

7.6 - Blade cleaning brush

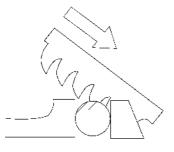
The brush removes the chips off the blade during the cutting cycle. Periodically check its wearing degree, eventually adjust or replace the metal brush.

- Screw the nut (C) of the vice. Screw the nuts of the circular guide as well.

- Keep the circular guide always clean.

CAREFULLY CARRY OUT THE FOLLOWING INSTRUCTIONS ABOUT BLADE REPLACEMENT.

7.7 - Blade replacement


- Lift the sawframe to the top position.
- Turn the lever to LOOSE, and soon after to NEUTRAL (see drawing below).
- Release the knob controlling the blade-guide pads.
- Open both flywheel covers and remove the blade first off the guiding blocks, then off the flywheels.
- Mount a new blade, first through the blade-guide pads, then on the flywheels (*pay attention to the teeth cutting direction*).
- Put the blade under tension by means of the special lever. Gradually tension the blade making sure that it perfectly suits to the flywheels and through the blade-guide pads. Definitively turn the lever to *TENSION* after having made sure

that the blade is correctly positioned.

- Note: recommended blade tension pressure= 22 BAR.
- Ensure that the blade cleaning brush is correctly adjusted.Close both flywheel covers.

ATTENTION: ensure that you are using the blade having the same size as indicated at page 5.

CUTTING DIRECTION

RELY ON SKILLED AND QUALIFIED PERSONNEL TO REPLACE OTHER MACHINE MEMBERS SUCH AS REDUCTION UNIT, PUMP MOTOR AND ELECTRICAL COMPONENTS.

8 ROUTINE AND SPECIAL MAINTENANCE

THE MAINTENANCE JOBS ARE LISTED BELOW, DIVIDED INTO DAILY, WEEKLY, MONTHLY AND SIX-MONTHLY IN-TERVALS. IF THE FOLLOWING OPERATIONS ARE NE-GLECTED, THE RESULT WILL BE PREMATURE WEAR OF THE MACHINE AND POOR PERFORMANCE.

8.1 - Daily maintenance

- General cleaning of the machine to remove accumulated shavings.
- Rack cleaning stop pawl of the vices.
- Top up the level of lubricating coolant.
- Check blade for wear.
- Check functionality of the shields and emergency stops.

8.2 - Weekly maintenance

- More accurate general cleaning of the machine to remove shavings, especially from the lubricant fluid tank.
- More accurate cleaning of the rack stop pawl of the vice.
- Removal of pump from its housing, cleaning of the suction filter and suction zone.
- Cleaning with compressed air the blade guide pads and bearing (drain hole of the lubricating cooling).
- Cleaning flywheel housings and blade sliding surfaces on flywheels.
- Check transmission belt on blademotor-gearbox.
- Check blade cleaning brush.

8.3 - Monthly maintenance

- Check the tightening of the motor flywheel screws.
- Check the tightening of the transmission flywheel ring nut.
- Check that the blade guide bearings on the heads are perfect running condition.
- Check the tightening of the screws of the pump and accident protection guarding.
- Check shields.

8.4 - Six-monthly maintenance (every 2000 hours)

REDUCTION UNIT

 Complete oil change (use GEARCO 85 W 140 of 'National', or KLUBER SINTHESO EP 460 or equivalent).

HYDRAULIC UNIT

- Complete oil change(use SHELL TELLUS T32 or equivalent).
- Check continuity of the equipotential protection circuit.

8.5 - Oils for lubricating coolant

Considering the vast range of products on the market, the user can choose the one most suited to his own requirements, using as reference the type SHELL LUTEM OIL ECO. THE MINIMUM PERCENTAGE OF OIL DILUTED IN WATER IS 8 - 10 %.

8.6 - Oil disposal

The disposal of these products is controlled by strict regulations. Please see the Chapter on "**Machine dimensions - Transport - Installation**" in the section on *Dismantling*.

8.7 - Special maintenance

Special maintenance operations must be carried out by skilled personnel. However, we advise contacting THOMAS or their dealer and/or importer. Also the reset of protective and safety equipment and devices, of the reducer, the motor, the motor pump and electric components is to be considered extraordinary maintenance.

THOMAS

MATERIAL 9 CLASSIFICATION AND CHOICE OF TOOL

Since the aim is to obtain excellent cutting quality, the various parameters such as hardness of the material, shape and thickness, transverse cutting section of the part to be cut, selection of the type of cutting blade, cutting speed and control of saw frame lowering. These specifications must therefore be harmoniously combined in a single operating condition according to practical considerations and common sense, so as to achieve an optimum condition that does not require countless operations to prepare the machine when there are many variations in the job to be performed. The various problems that crop up from time to time will be solved more easily if the operator has a good knoledge of these specifications.

WE THEREFORE RECOMMEND YOU TO ALWAYS USE GENUINE "THOMAS" SPARE BLADES THAT GUARANTEE SUPERIOR QUALITY AND PERFORMANCE.

9.1 - Definition of materials

The table at the foot of the page lists the characteristics of the materials to be cut, so as to choose the right tool to use.

9.2 - Selecting blade

First of all the pitch of the teeth must be chosen, in the other

TYPES OF STEEL

words, the number of teeth per inch (25,4 mm) suitable for the material to be cut, according to these criteria:

- parts with a thin and/or variable section such as profiles, pipes and plate, need close toothing, so that the number of teeth used simultaneously in cutting is from 3 to 6;
- parts with large transverse sections and solid sections need widely spaced toothing to allow for the greater volume of the shavings and better tooth penetration;
- parts made of soft material or plastic (light alloys, mild bronze, teflon, wood, etc.) also require widely spaced toothing;
- pieces cut in bundles require combo tooth design.

9.3 - Teeth pitch

As already stated, this depends on the following factors:

- hardness of the material
- dimensions of the section
- thickness of the wall

BLADE TEETH SELECTION TABLE				
THICKNESS MM	Z CONTINUOUS TOOTH DESIGN	Z COMBO TOOTH DESIGN		
TILL 1.5	14	10/14		
FROM 1 TO 2	8	8/12		
FROM 2 TO 3	6	6/10		
FROM 3 TO 5	6	5/8		
FROM 4 TO 6	6	4/6		
· MORE THAN 6	4	4/6		
Ø				
	S = THICKNESS			

CHARACTERISTICS

USE	I UNI	D DIN	F AF NOR	GB SB	USA AISI-SAE	Hardness BRINELL HB	Hardness ROCKWELL HRB	R=N/mm ²
Construction steels	Fe360 Fe430 Fe510	St37 St44 St52	E24 E28 E36	 43 50		116 148 180	67 80 88	360÷480 430÷560 510÷660
Carbon steels	C20 C40 C50 C60	CK20 CK40 CK50 CK60	XC20 XC42H1 XC55	060 A 20 060 A 40 060 A 62	1020 1040 1050 1060	198 198 202 202	93 93 94 94 94	540÷690 700÷840 760÷900 830÷980
Spring steels	50CrV4 60SiCr8	50CrV4 60SiCr7	50CV4	735 A 50 	6150 9262	207 224	95 98	1140÷1330 1220÷1400
Alloyed steels for hardening and tempering and for nitriding	35CrMo4 39NiCrMo4 41CrAlMo7	34CrMo4 36CrNiMo4 41CrAlMo7	35CD4 39NCD4 40CADG12	708 A 37 905 M 39	4135 9840 	220 228 232	98 99 100	780÷930 880÷1080 930÷1130
Alloyed casehardening steels	18NiCrMo7 20NiCrMo2	 21NiCrMo2	20NCD7 20NCD2	En 325 805 H 20	4320 4315	232 224	100 98	760÷1030 690÷980
Alloyed for bearings	100Cr6	100Cr6	100C6	534 A 99	52100	207	95	690÷980
Tool steel	52NiCrMoKU C100KU X210Cr13KU 58SiMo8KU	56NiCrMoV7C100K C100W1 X210Cr12 	 Z200C12 Y60SC7	BS 1 BD2-BD3 	 S-1 D6-D3 S5	244 212 252 244	102 96 103 102	800÷1030 710÷980 820÷1060 800÷1030
Stainless steels	X12Cr13 X5CrNi1810 X8CrNi1910 X8CrNiMo1713	4001 4301 4401	Z5CN18.09 Z6CDN17.12		410 304 316	202 202 202 202 202	94 94 94 94	670÷885 590÷685 540÷685 490÷685
Copper alloys Special brass BronzeSpecial manganese/silicon brass G-CuZn36Si1Pb1 UNI50381407737BronzeManganese bronze SAE43 - SAE430 Phosphor bronze G-CuSn12 UNI 7013/2a1206932		620÷685 375÷440 320÷410 265÷314						
Cast iron	Gray pig iron Spheroidal grap Malleable cast i	G25 ohite cast iron GS600 ron W40-05				212 232 222	96 100 98	245 600 420

SOLID Ø OR L MM	Z CONTINUOUS TOOTH DESIGN	Z COMBO TOOTH DESIGN
TILL 30	8	5/8
FROM 30 TO 60	6	4/6
FROM 40 TO 80	4	4/6
MORE THAN 90	3	3/4
	Ø = DIAMETER L = W	иртн

9.4 - Cutting and advance speed

The cutting speed (m/min) and the advance speed (cm^2/min = area travelled by the blade during removal of chip) are limited by the development of heat close to the tips of the teeth.

- The cutting speed is subordinate to the resistance of the material ($R = N/mm^2$), to its hardness (HRC) and to the dimensions of the widest section.
- Too high an advance speed (= lowering of the saw frame) tends to cause the blade to deviate from the ideal cutting path, producing non rectilinear cuts on both the vertical and the horizontal plane.

The best combination of these two parameters can be seen directly examining the chips.

Long spiral-shaped chips indicate ideal cutting.

Very fine or pulverized chips indicate lack of feed and/or cutting pressure.

Thick and/or blue chips indicate overload of the blade.

9.5 - Blade running-in

When cutting for the first time, it is good practice to run in the tool making a series of cuts at a low advance speed (= $30-35 \text{ cm}^2/\text{min}$ on material of average dimensions with respect to the cutting capacity and solid section of normal steel with R = $410-510 \text{ N/mm}^2$), generously spraying the cutting area with lubricating coolant.

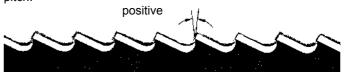
9.6 - Blade structure

Bi-metal blades are the most commonly used. They consist in a silicon-steel blade backing with electron beam or laser welded high speed steel (HHS) cutting edge. The type of stocks are classified in M2, M42, M51 and differ from each other because of their major hardness due to the increasing percentage of Cobalt (Co) and molybdenum (Mo) contained in the metal alloy.

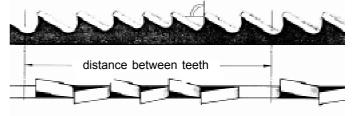
9.7 - Blade type

They differ essentially in their constructive characteristics, such as:

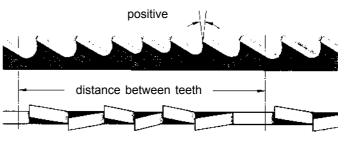
- shape and cutting angle of tooth
- pitch
- set


Shape and angle of tooth

REGULAR TOOTH: 0° rake and constant pitch.


Most common form for transversal or inclined cutting of solid small and average cross-sections or pipes, in laminated mild steel and grey iron or general metal.

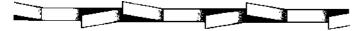
POSITIVE RAKE TOOTH: 9° - 10° positive rake and constant pitch.


Particular use for crosswise or inclined cuts in solid sections or large pipes, but above all harder materials (highly alloyed and stainless steels, special bronze and forge pig).

COMBO TOOTH: pitch varies between teeth and consequently varying teeth size and varying gullet depths. Pitch varies between teeth which ensures a smoother, quieter cut and longer blade life owing to the lack of vibration.

Another advantage offered in the use of this type of blade in the fact that with an only blade it is possible to cut a wide range of different materials in size and type.

COMBO TOOTH: 9° - 10° positive rake.



This type of blade is the most suitable for the cutting of section bars and large and thick pipes as well as for the cutting of solid bars at maximum machine capacity. Available pitches: 3-4/4-6.

Set

Saw teeth bent out of the plane of the saw body, resulting in a wide cut in the workpiece.

REGULAR OR RAKER SET: Cutting teeth right and left, alternated by a straight tooth.

Of general use for materials with dimensions superior to 5 mm. Used for the cutting of steel, castings and hard nonferrous materials.

WAVY SET: Set in smooth waves.

This set is associated with very fine teeth and it is mainly used for the cutting of pipes and thin section bars (from 1 to 3 mm).

ALTERNATE SET (IN GROUPS): Groups of cutting teeth right and left, alternated by a straight tooth.

This set is associated with very fine teeth and it is used for extremely thin materials (less than 1 mm).

ALTERNATE SET (INDIVIDUAL TEETH): Cutting teeth right and left.

This set is used for the cutting of nonferrous soft materials, plastics and wood.

9.7.1 - RECOMMENDED CUTTING PARAMETERS

STEEL	CUTTING SPEED	LUBRICATION	REMOVAL cm ² /min
CONSTRUCTION	60/80	EMULSIFIABLE OIL	40/60
CEMENTATION	40/50	EMULSIFIABLE OIL	20/40
CARBON STEEL	40/60	EMULSIFIABLE OIL	40/60
HARDENING AND TEMPERING	40/50	EMULSIFIABLE OIL	30/50
BEARINGS	40/60	EMULSIFIABLE OIL	15/30
SPRINGS	40/60	EMULSIFIABLE OIL	10/30
FOR TOOLS	30/40	EMULSIFIABLE OIL	6/20
FOR VALVES	35/50	EMULSIFIABLE OIL	20/30
STAINLESS STEEL	30/40	EMULSIFIABLE OIL	6/20
SPHEROIDAL GRAPHITE	20/40	EMULSIFIABLE OIL	6/30
CAST IRON	40/60	EMULSIFIABLE OIL	30/60
ALUMINIUM	80/600	KEROSENE	60/450
BRONZE	70/120	EMULSIFIABLE OIL	40/70
HARD BRONZE	30/60	EMULSIFIABLE OIL	6/20
BRASS	70/350	EMULSIFIABLE OIL	25/80
COPPER	50/720	EMULSIFIABLE OIL	

18

10 MACHINE COMPONENTS

THOMAS

10.1 - List of spare parts

TABLE 1

N. D	ESCRIPTION
01	Base
	. Coolant tank level
03	
	. Electric component box
	. Righthand angle guide
06	
	. Electropump plate
08	
09	. Coolant filter
10	
	. Central support
12	
13	. Lefthand angle guide
14	
15	
16	
17	
18	
	. Box supporting square (R)
	. Box support square (L)
21	. Beraing housing
	. Beraing 6205 2Z
23	
24	
25	
26	
28	. Motor for swivelling system
29	
30	
31	
32	
V2	

TABLE 2

N.

DESCRIPTION

21	Ring 'OR'
22	Cylinder rear flange
23	Screw
24	Material support (unloading side)
25	
26	Countervice
27	Screw
28	Block
29	Screw
30	Washer

TABLE 3

N.

DESCRIPTION

IN.	DESCRIPTION
01	Gear-box housing
02	
	Worm screw shaft
	Bearing 6206
05	Cover (L)
06	
07	
	Protection support
10	
	Bearing 51204
12	
13	Hinged pin
14	Bushing
15	
	Threaded pin
17	Washer
18	Washer
19	
20	Driving belt protection
21	
22	Bearing 6207
23	
	Ring Seeger Ø 35
25	Bearing 51307
26	Springs
27	Joint SM 35 50 7
28	Belt 3V 475
29	Driven pulley
	Threaded rod
31	Plate guide
32	Motor support plate
33	Nut
34	Wrench
35	Motor for blade rotation
36	Motor pulley
37	Flange
38	Screw
39	Motor pulley for blade cleaning brush
	Driving belt for blade cleaning brush
	·

TABLE 4

N. DESCRIPTION	
01 Gear-box housing	
02 Washer	
03 Screw	
04 Worm wheel	
05 Worm wheel bushing	
06 Joint	
07 Worm wheel shaft	
08 Bearing 32012	
09 Bearing spacer	
10 Motor flywheel cover	
11 Stop ring	
12Nut	
13 Sawframe	
14 Screw	
15 Motor flywheel	
16	
17 Flange of motor flywhe	el
18 Flange	

TABLE 5N.DESCRIPTION

01	. Sawframe
02	Driven flywheel cover
03	Driven flywheel
04	Driven flywheel shaft
05	. Bearing 32209 A
06	Spacer
07	
08	. Stop ring
09	. Nut M 45
10	. Driven flywheel flange
13	. Greasing point
	Slide support for blade tension
15	. Slide for blade tension
16	. Slide gibs
17	. Nut
18	
	Front part of blade tension cylinder
20	
21	. Ring 'OR'
22	Blade tension cylinder
23	Piston of blade tension cylinder
24	. Ring 'OR'
25	
	Rear part of blade tension cylinder
	Screw for blade tension adjustment
28	
	Reference plates
30	
	Adjusting screw
32	
33	
34	
35	
36	
37	
38	Screw

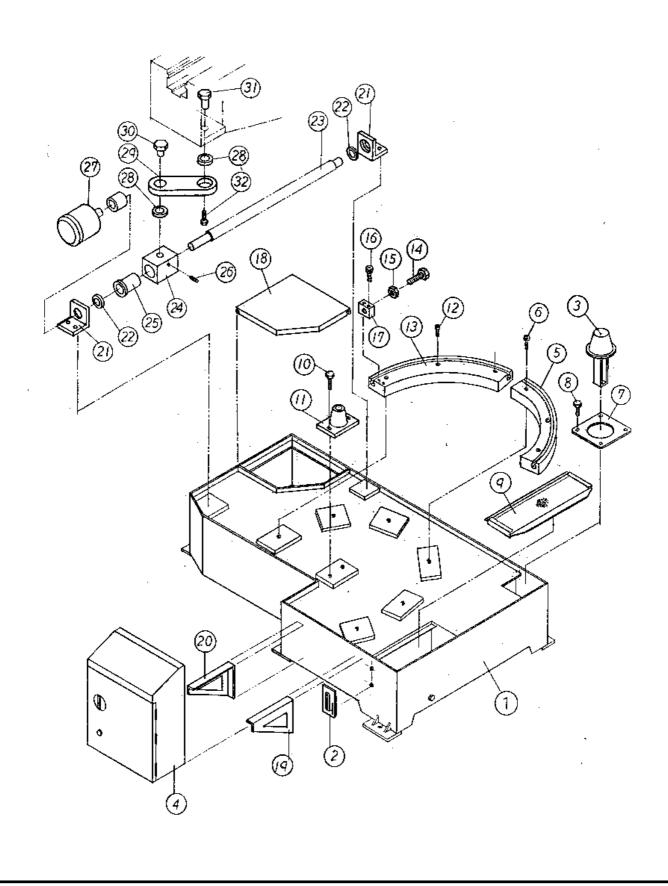
TABLE 6

N. DESCRIPTION

01	Slide
02	Scale
03	Pin

04	Screw
05	
	. Blade-guide arm
07	
08	
09	Washer
10	
	Fixed blade-guide block
12	
13	. Washer
14	
15	
	Bearing 6201
17	Screw
18	. Washer
19	Screw
20	Screw
21	Spacer
22	
23	Spring
24	. Knob
25	
26	Lateral blade-guide pad (R)
27	. Top blade-guide pad
28	Lateral blade-guide pad (L)
	Mobile blade-guide block
30	
31	Mobile blade-guide arm
	Threaded pin
33	
34	Scrow

34 Screw


TABLE 7

NR. DESCRIZIONE

1ª SERIE	
01	
02	
03	Guard
04	Shaft
05	Support
06	Swivel joint
07	Bush
2 ^ª SERIE	
01	Guard
02	
03	
04	
05	
06	
07	
08	Pin
09	
10	Screw
11	Ring
12	
13	
14	
15	
16	
17	
18	
19	Bracket
20	
21	
22	
23	Shaft

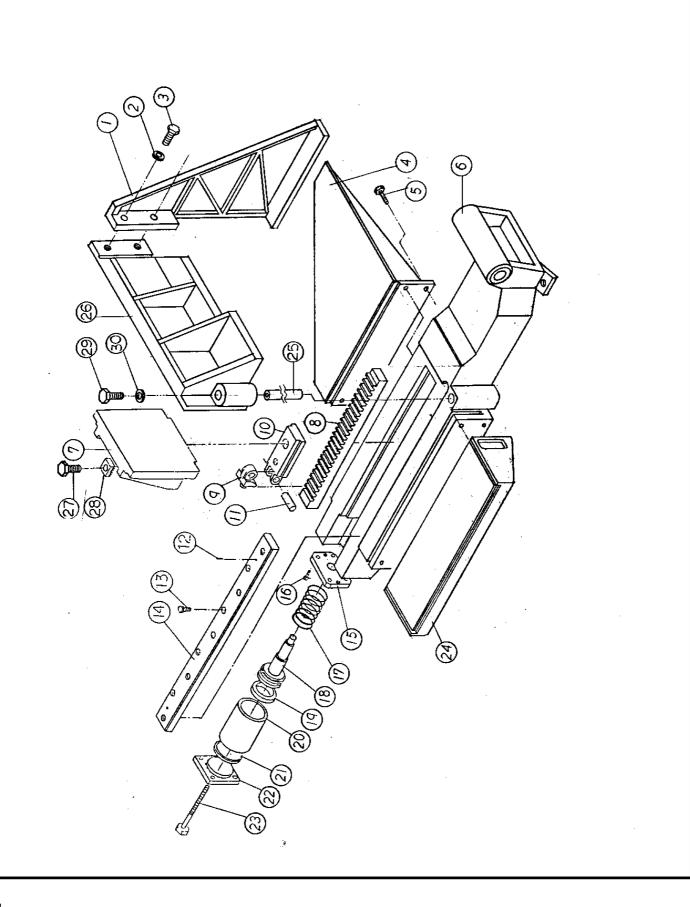

THOMAS

TAVOLA 1

THOMAS

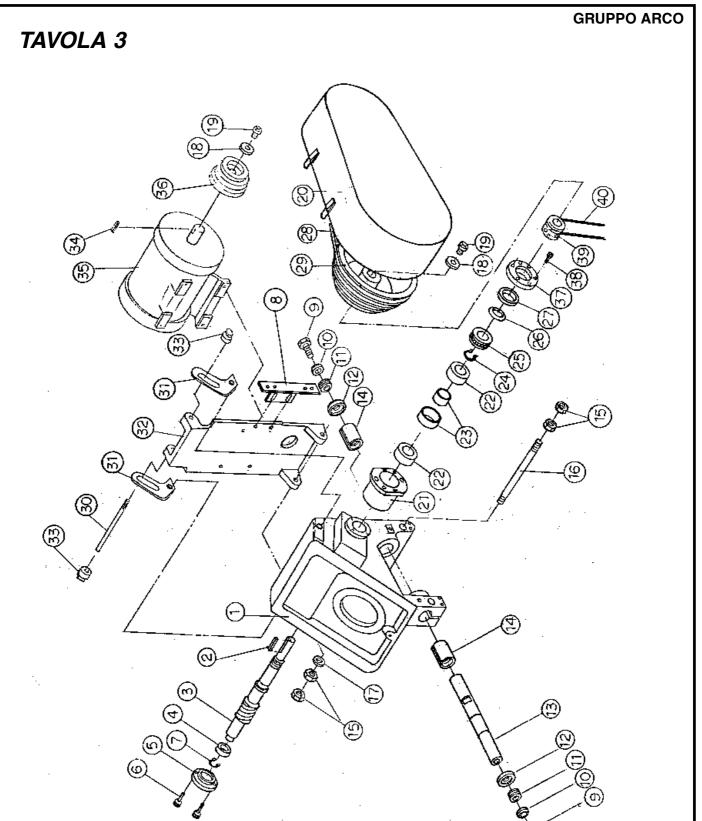
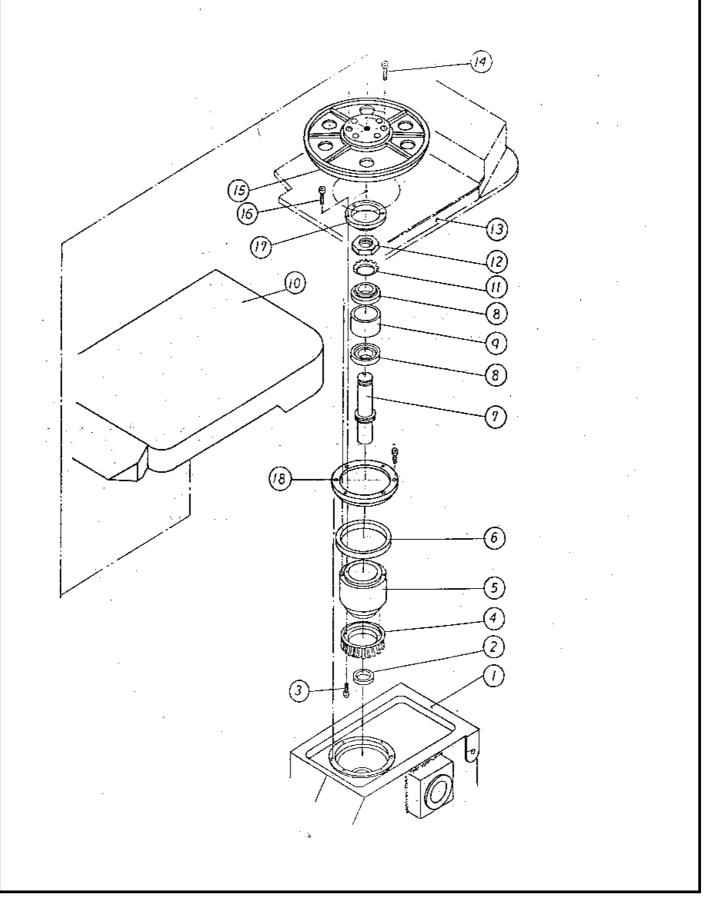





TAVOLA 4

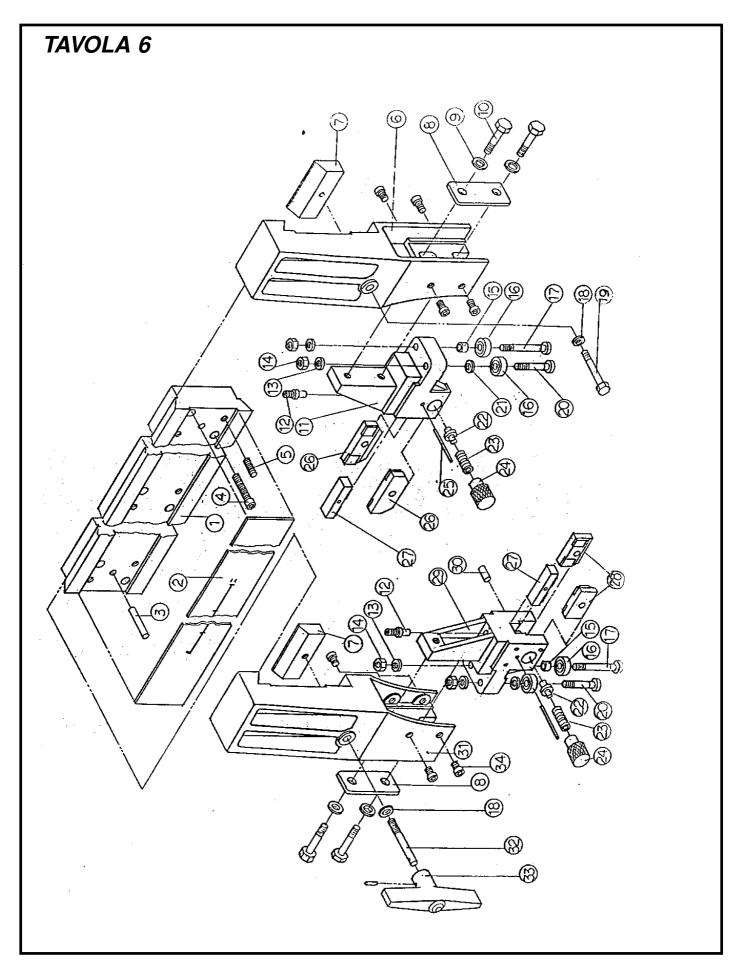


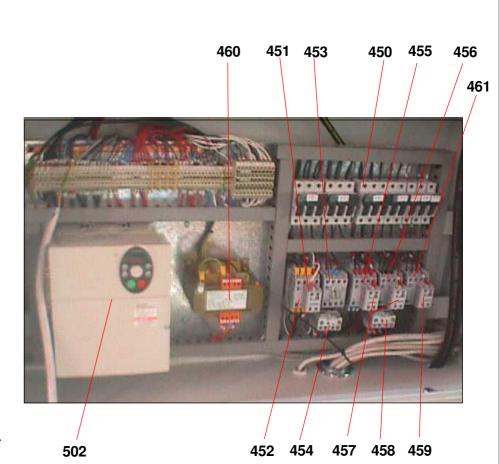
TAVOLA 5

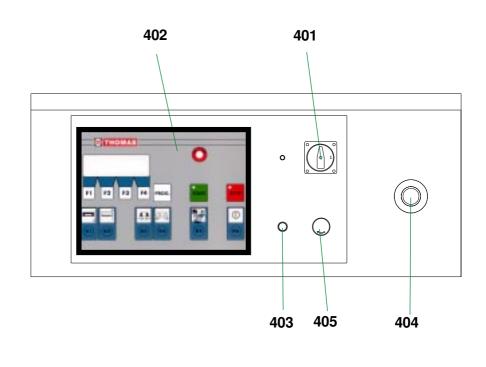
THOMAS

SAR 460 SA G

TAVOLA 7

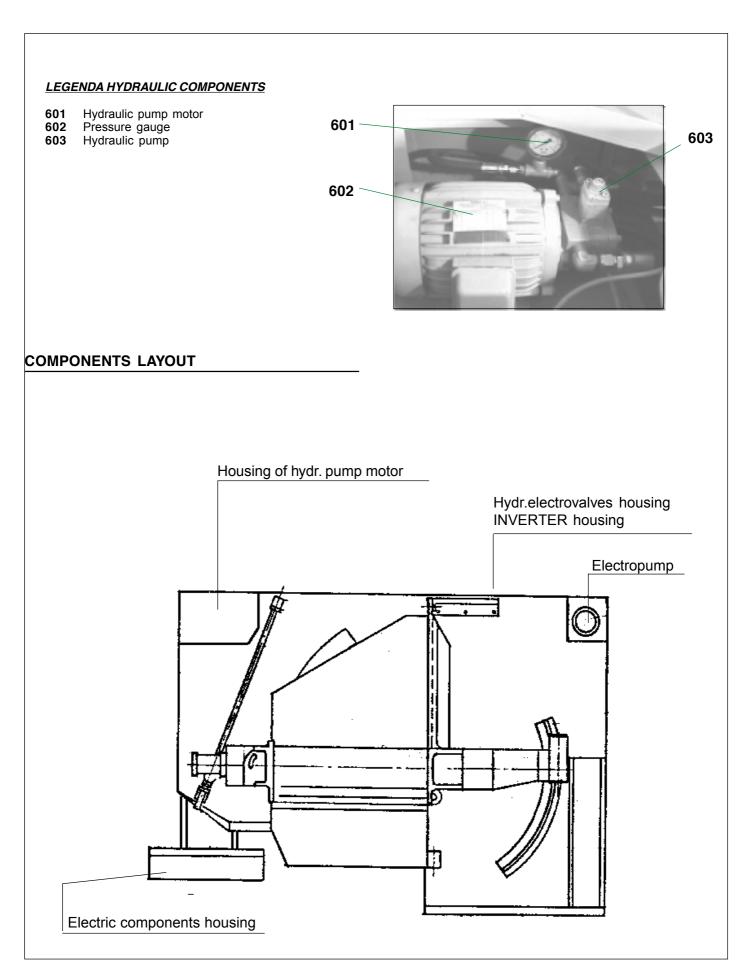
1ª SET


2ª SET

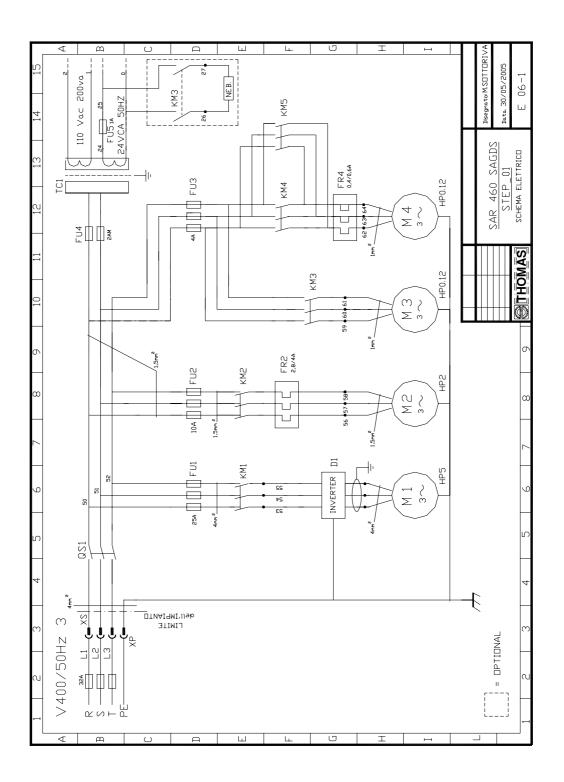

LEGENDA ELECTRIC COMPONENTS

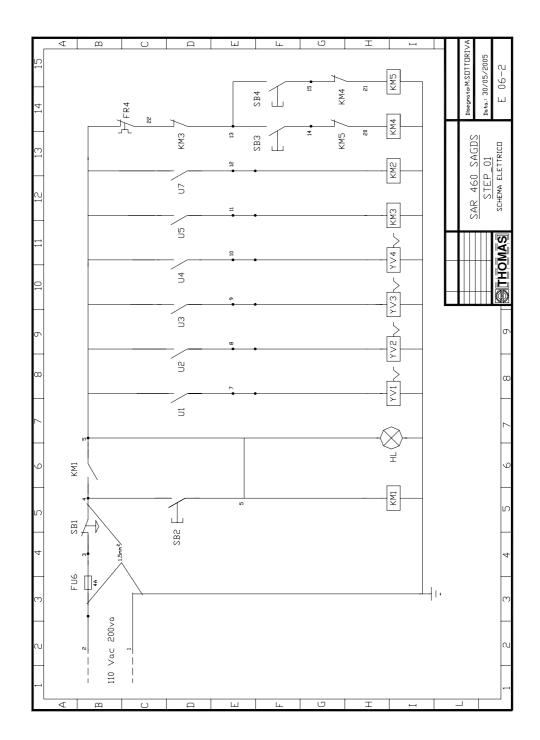
450	Fuse cartridge
451	Aux. contact
452	Remote switch
453	Remote switch
454	Thermal relay
455	Remote switch
456	Remote switch
457	Aux. contact
458	Remote switch
459	Aux.contact
460	Transformer
461	Thermal relay

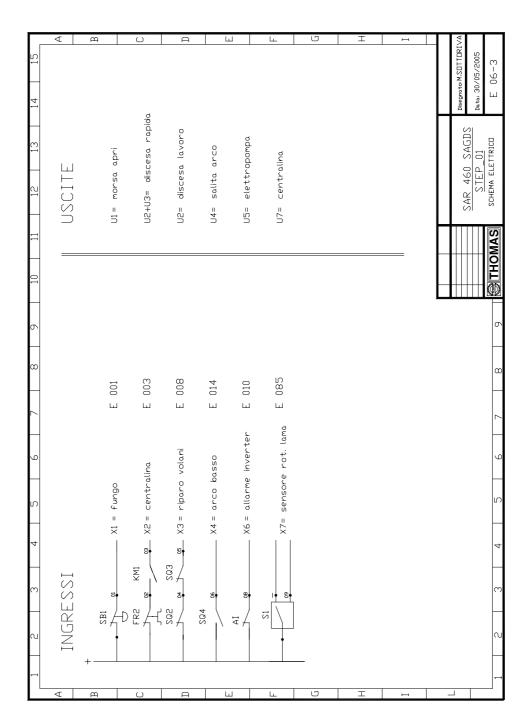
LEGENDA CONTROL PANEL

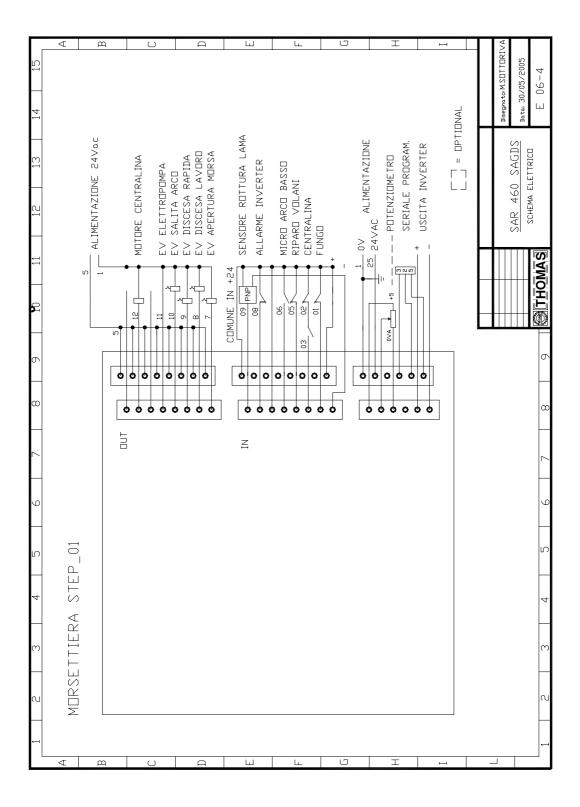

- 401 Main switch
- 402 Electronic control SAW 1
- 403 Start push button
- 404 Sawframe downfeed regulator
- 405 Emergency push button

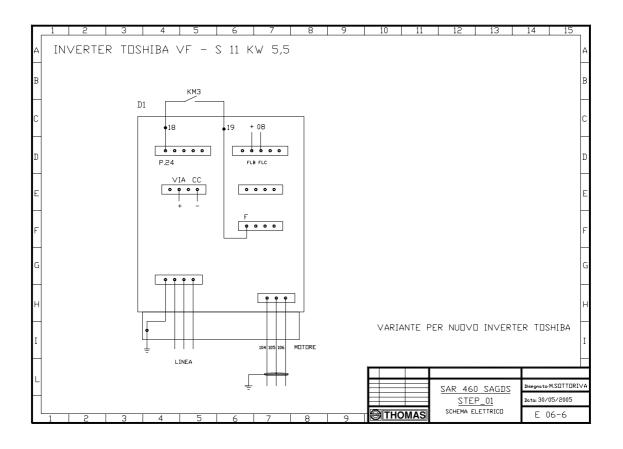
LEGENDA INVERTER

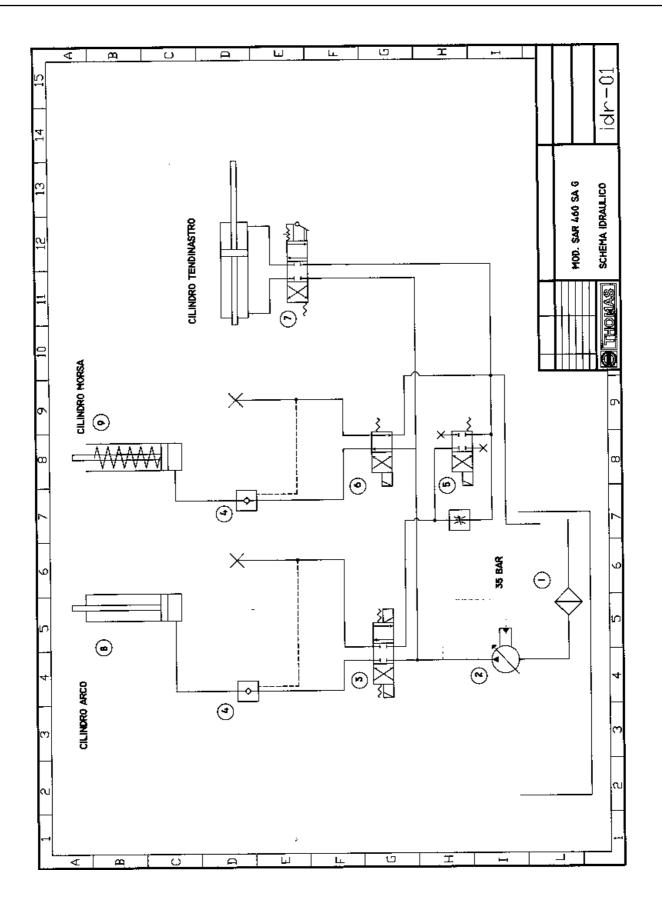

501 Inverter




11 SCHEMI ELETTRICI 11.1 - Schema elettrico trifase







	∢	щ	U	9	ш	LL.	U	Т	н	-	4		
											DisegnatorM.SDTTDRIV/	ß	
Ĥ											E	Data 30/05/2005	06-5
н		1.9	EGENDA	9A2	160 5	AGDS	STED 1	01			M.S	/05/	
				SHK	400 3	нарз	3 I LI _'	01			gnat	" 30	ш
1											Dise	Date	
Ш		SIGL	^	DES	CRIZI								
			-	DES	CRIZIL	JINE					460 SAGDS		
с С		QS1		Int	errut	tore :	genero	ale			A C	B	SCHEMA ELETTRICO
		FU1		Car	tuccio	fusi	oile					- -	15
		FU2		Car	tuccio	fusil	oile				46(μĒ	Ē
μ		FU3		Car	tuccio	fusil	oile				ά	0	시원
		FU4				fusil					SAR		S
Н		FU5				fusil							
		FU6				t fusil				Г			S
		FU7											IĮ≸
Н						l fusil							Ιģ
0		KM1											CTHOMAS
		KW5					entr.						Ø
Н		КМЗ					lettr		a				T
		KM4					ot. arc						σ
σ		KM5		Tel	erutt	ore r	ot. ar	CO					ľ
Н		FI1		Fil	tro i	nvert	er						+
		D1		Inv	erter								
μ		D2		Pot	enzio	metro	ango	lare					α
н		D3				o Ste							
		FR2			e' ter		P_01						
		FR4				rmico							
Ц		TC1				atore							
		SB1				emerç							
9		SB5											4
							io ci						L
		SB3					z. arc						
S		SB4				rota	z. arc	0					ا
			, 3, 4, 5										
		YV1					ori mor						
4		XV5					sceso						4
			FXV3				sceso		da				
П		YV4					ilita	arco					
m		SQ1		Mic	ro ro	ttura	lama						m
		SQ2-	SQ3				volan	i .					
H		SQ4				io bas							
6		ΑI				inver							a
Ĩ		S1		Sen	sore	rottu	ra la	ma					
Н													F
													-
1 l	∢	m	U	-	ш	<u> </u>	U	т			_	-	
	4			H			-	-				1	

11.2 - Schema elettrico idraulico

LEGENDA ELECRIC CIRCUIT

S1

QS1	Main switch
M1	Motor for blade rotation
M2	Motor for hydraulic unit
МЗ	Motor for coolant liquid
M4	Motore for sawframe swivelling
FU1	Fuse cartridge
FU2	Fuse cartridge
FU3	Fuse cartridge
FU4	Fuse cartridge
FU5	Fuse cartridge
FU6	Fuse cartridge
KM1	Remote switch for INVERTER
KM2	Remote switch for hydraulic unit
KM3	Remote switch for coolant electropump
KM4-KM5	Remote switch for sawframe swivelling
FI1	Filter for Inverter
D1	INVERTER
D2	Potentiometer
FR2	Thermal relay
TC1	Transformer
SB1	Emergency push button
SB2	Cycle start push button
SB3	Push button for sawframe swivelling
SB4	Push button for sawframe swivelling
AI	Alarm Inverter
YV1	Electrovalve vice opening
YV2	Electrovalve sawframe downfeed
YV2+YV3	Electrovalve quick sawframe downfeed
YV4	Electrovalve sawframe lifting
SQ1	Microswitch for blade breakage
SQ2-SQ3	Microswitch for flywheel cover
SQ4	Microswitch for sawframe down
U1,2,3,4	
,5,7	Outputs
04	

Blade breakage sensor

LEGENDA HYDRAULIC CIRCUIT

- 01 Filter
- 02 Hydraulic pump 03 Electrovalve for sawframe cylinder
- 04 Stop Valve
- 05 Electrovalve for quick sawframe downfeed
- 06 Electrovalve fro vice cylinder 07 Electrovalve for blade tension cylinder
- 08Sawframe cylinder 09Vice cylinder

12 TROUBLESHOOTING

This chapter lists the probable faults and malfunctions that could occur while the machine is being used and suggests possible remedies for solving them.

The first paragraph provides diagnosis for TOOLS and CUTS, the second for ELECTRICAL COMPONENTS.

12.1 - Blade and cut diagnosis

Wrong too Chips stic gullets or Defects or hard	ting speed	Decrease advance, exerting less cutting pressure. Change blade speed and/or type of blade. See Chapter "Material classification and blade selection" in the Blade selec- tion table according to cutting and feed speed. Choose a suitable blade. See Chapter "Material classification and blade se- lection". Check for clogging of cooling liquid drain holes on the blade-guide blocks and that flow is plentiful in order to facilitate the removal of chips from the blade. Material surfaces can be oxidised or cov-
Wrong too Chips stic gullets or Defects or hard	th pitch king onto teeth and in the naterial that gums	See Chapter "Material classification and blade selection" in the Blade selec- tion table according to cutting and feed speed. Choose a suitable blade. See Chapter "Material classification and blade se- lection". Check for clogging of cooling liquid drain holes on the blade-guide blocks and that flow is plentiful in order to facilitate the removal of chips from the blade. Material surfaces can be oxidised or cov-
Chips stic gullets or Defects or hard	king onto teeth and in the naterial that gums	Choose a suitable blade. See Chapter "Material classification and blade se- lection". Check for clogging of cooling liquid drain holes on the blade-guide blocks and that flow is plentiful in order to facilitate the removal of chips from the blade. Material surfaces can be oxidised or cov-
gullets or Defects or hard	naterial that gums	holes on the blade-guide blocks and that flow is plentiful in order to facilitate the removal of chips from the blade. Material surfaces can be oxidised or cov-
hard	the material or material too	
		ered with impurities making them, at the beginning of the cut, harder that the blade itself, or have hardened areas or inclu- sions inside the section due to produc- tive agents used such as casting sand, welding wastes, etc. Avoid cutting these materials or in any case perform cutting with extreme care, cleaning and remov- ing such impurities as quickly as possi- ble.
Ineffective vice	gripping of the part in the	Check the gripping of the part.
The blade	gets stuck in the material	Reduce feed and exert less cutting pres- sure.
Starting cutors the starting cutors bars	t on sharp or irregular sec-	Pay more attention when you start cut- ting.
Poor qual	ty blade	Use a superior quality blade.
Previously	broken tooth left in the cut	Accurately remove all the parts left in.
Cutting re previously	sumed on a groove made	Make the cut elsewhere, turning the part.
Vibrations		Check gripping of the part.
Wrong too	th pitch or shape	Replace blade with a more suitable one. See Chapter "Material classification and blade selection" in the <i>Blade Types</i> section.
Insufficier wrong em	t lubricating refrigerant or ulsion	Check level of liquid in the tank. Increase the flow of lubricating refrigerant, check- ing that the hole and the liquid outlet pipe are not blocked. Check the emulsion percentage.
Teeth pos posite the	tioned in the direction op-	Turn teeth in correct direction.

FAULT	PROBABLE CAUSE	REMEDY
PREMATURE BLADE WEAR	Faulty running-in of blade	See Chapter "Material classification and blade selection" in the Blade run- ning-in section.
	Teeth positioned in the direction op- posite the cutting direction	Turn teeth in correct direction.
	Poor quality blade	Use a superior quality blade.
	Too fast advance	Decrease advance, exerting less cutting pressure. Adjust the braking device if mounted on the machine.
	Wrong cutting speed	Change speed of blade. See Chapter "Material classification and blade selection" in the Blade selec- tion table according to cutting and feed speed.
	Defects on the material or material too hard	Material surfaces can be oxidised or cov- ered with impurities making them, at the beginning of the cut, harder that the blade itself, or have hardened areas or inclu- sions inside the section due to produc- tive agents used such as casting sand, welding wastes, etc. Avoid cutting these materials or in any case perform cutting with extreme care, cleaning and remov- ing such impurities as quickly as possi- ble.
	Insufficient lubricating refrigerant or wrong emulsion	Check level of liquid in the tank. Increase the flow of lubricating refrigerant, check- ing that the hole and the liquid outlet pipe are not blocked. Check the emulsion percentage.
BLADE BREAKAGE	Faulty welding of blade	The welding of the blade is of utmost im- portance. The meeting surfaces must perfectly match and once they are welded they must have no inclusions or bubbles; the welded part must be perfectly smooth and even. They must be evenly thick and have no bulges that can cause dents or instant breakage when sliding between the blade guiding block pads.
	Too fast advance	Decrease advance, exerting less cutting pressure. Adjust the braking device if mounted on the machine.
	Wrong cutting speed	Change blade speed and/or type of blade. See Chapter "Material classification and blade selection" in the Blade selec- tion table according to cutting and feed speed.
	Wrong tooth pitch	Choose a suitable blade. See Chapter "Material classification and blade se- lection".
	Ineffective gripping of the part in the vice	Check the gripping of the part.
When by	Blade touching material at beginning of cut	At the beginning of the cutting process, never lower the saw frame before start- ing the blade motor.

FAULT	PROBABLE CAUSE	REMEDY
	Blade guide pads not regulated or	Check distance between pads (see
Roco	dirty because of lack of maintenance	Chapter "Machine adjustments " in the Blade Guide blocks section): extremely accurate guiding may cause cracks and breakage of the tooth. Clean carefully.
	Blade too slack	Check that on the blade tightening pres- sure gauge reads 22 BAR, yhe ideal tight- ening value.
	Blade guide block too far from mate- rial to be cut	Approach head as near as possible to material to be cut so that only the blade section employed in the cut is free, this will prevent deflections that would exces- sively stress the blade.
	Improper position of blade on fly- wheels	The back of blade rubs against the sup- port due to deformed or poorly welded bands (tapered), causing cracks and swelling of the back contour.
	Insufficient lubricating refrigerant or wrong emulsion	Check level of liquid in the tank. Increase the flow of lubricating refrigerant, check- ing that the hole and the liquid outlet pipe are not blocked. Check the emulsion per- centage.
	— — — — — — — — — — — — — — — — — — —	
	Tight or slackened blade guide pads	Adjust them (see Chapter " Machine ad- justments " in <i>Blade guide blocks</i> section).
CUTS OFF THE STRAIGHT	Blade not parallel as to the counter- vice	Check fastenings of the blade guide heads as to the counter-vice so that they are not too loose and adjust heads verti- cally; bring into line the position of the degrees and if necessary adjust the stop screws of the degree cuts.
	Blade not perpendicular due to the excessive play between the guide bearings and maladjustment of the	Check and vertically re-adjust the blade guide blocks; reset proper side guide play (see Chapter " Machine adjustments " in <i>Blade guide blocks</i> section).
	heads Too fast advance	Decrease advance, exerting less cutting pressure. Adjust the braking device if mounted on the machine.
	Blade guide block too far from mate- rial to be cut	Approach head as near as possible to material to be cut so that only the blade section employed in the cut is free, this will prevent deflections that would exces- sively stress the blade.
	Blade too slack	Check that the tightening pressure gauge reads 22 BAR, the ideal tightening value.
	Worn out blade	Replace it. Blade used probably has too large teeth;
	Wrong tooth pitch	"Material classification and blade se- lection" in the Selecting blade section).

FAULT	PROBABLE CAUSE	REMEDY
	Broken teeth	Irregular work of the blade due to the lack of teeth can cause deflection in the cut check blade and if necessary replace it.
	Insufficient lubricating refrigerant or wrong emulsion	Check level of liquid in the tank. Increase the flow of lubricating refrigerant, check ing that the hole and the liquid outlet pipe are not blocked. Check the emulsion percentage.
FAULTY CUT	Worn out flywheels	The support and guide flange of the band are so worn out that they cannot ensure the alignment of the blade, causing faulty cutting; blade rolling and drawing tracks can have become tapered. Replace them
	Flywheel housing full of chips Blade too slack	Clean with compressed air. Check that on the blade tightening pres sure gauge reads 22 BAR, the ideal tight ening value.
	Too fast advance	Decrease advance, exerting less cutting pressure. Adjust the braking device i mounted on the machine.
	Poor quality blade	Use a superior quality blade.
	Worn out blade or with chipped and/ or broken teeth	Replace it.
	Wrong tooth pitch	Blade used probably has too large teeth use one with more teeth (see Chapte "Material classification and blade se lection" in the Selecting blade and Blade Types sections).
	Blade guide head too far from mate- rial to be cut	Approach head as near as possible to material to be cut so that only the blade section employed in the cut is free, this will prevent deflections that would exces sively stress the blade.
	Blade too slack	Check that on the blade tightening pres- sure gauge reads 22 BAR, the ideal tight- ening value.
	Insufficient lubricating refrigerant or wrong emulsion	Check level of liquid in the tank. Increase the flow of lubricating refrigerant, check- ing that the hole and the liquid outlet pipe are not blocked. Check the emulsion percentage.
NOISE ON GUIDE BLOCKS	- — — — — — — — — — — — — — — — — — — —	— — — — — — — — — — — — — — — — — — —
		Replace them.

12.2 - Electrical components diagnosis

FAULT	PROBABLE CAUSE	REMEDY
MACHINE DOES NOT WORK	Power supply	Check: - phases - cables - socket - plug
	Main disconnect switch	Voltage must arrive upstream from the fuses (terminal board). It must be turned to ON position. Check electrical efficiency. Check power line connections and relative terminals.
	Fuses	Check electrical efficiency and check for shorts that trigger these protections on the power side of the circuit.
	" SQ 1 " safety microswitch	Check closing of the flywheel guard. Check the efficiency of the device; re-
	Blade tightening microswitch	place it if damaged. Make sure to have tightened the blade with the relevant handwheel and to have
	Emergency button " SB 1 " on	actuated the microswitch. Ensure that it is off and that its contacts are unbroken.
	Cycle reset or line button " SB 2 "	Check mechanical efficiency; replace if damaged.
	Thermal relay of main motor	Check that thermal relay protecting main motor is correctly connected.
	Transformer " TC 1 "	Check that the supply voltage is the same as the line voltage and that it gives a value of 24 V at output.
	Fuse " FU 2 - FU 3 "	Check fuse efficiency and ensure there are no short circuits causing the protec- tion on the control side of the circuit.
	Microswitch " SQ 2 "	After having raised the saw frame, check that the microswitch is not engaged and if necessary check operating efficiency.
MOTOR STOPPED WITH PILOT	Remote-control switch " KM "	<u>Check that phases are present at both</u> input and output; ensure that it is not blocked, that it closes when fed, that it
LIGHT "HL" LIT	Motor " M 1 "	does not cause short circuits; otherwise change it. Check that it is not burnt and that it turns freely. It may be rewound or changed.

13 NOISE TESTS

In accordance with point 1.7.4.f of the Machines Directive EEC 98/37

INTEGRATING PHONOMETER "DELTA OHM" mod. HD9019K1 serial n. 110996B295. MICROPHONE mod. HD 9019S1.

SOUND GAUGER mod. HD 9101 at 94dB/110dB 1.000 Hz in CLASS 1 according to IEC regulation n. 942 1988 and ANSI S1.40 1984 3 measurements with the machine operating unloaded.

The microphone was been located close to the operator's head, at medium height.

 The weighted equivalent continuous acoustic pressure level was 74,3 dB (A).
 The maximum level of the WEIGHTED instantaneous acoustic pressure C was always less than 130 dB.
 NOTE: with the machine operating, the noise level will vary according to the different materials being processed. The user must therefore assess the intensity and if necessary provide the operators with the necessary personal protection, as required by Law 277/1991.

PLATES AND LABELS

NOTE:

THOMAS S.p.A. - Via Pasubio, 32 - 36033 Isola Vicentina (VI) - Telefono 0444 / 97.61.05 - Telefax 0444 / 97.69.34